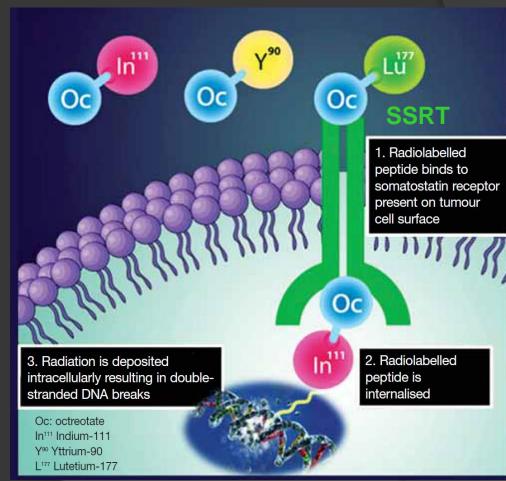
Hong Kong International Oncology Forum 2017

Concurrent Session 4: Neuroendocrine Tumour

Use of Peptide Receptor Radionuclide Therapy (PRRT) for Treatment of Neuroendocrine Tumour

Dr. Thomas K.C. Cheng

Honorary Consultant in Nuclear Medicine Department of Nuclear Medicine & Positron Emission Tomography


Peptide Receptor Radionuclide Therapy

❖ Radionuclide-molecular therapy

Radionuclide (90Y/177Lu)

Peptide (Octreotate)

❖ 1st performed in HKSH in 08/2011

PRRT

❖Neuroendocrine tumor

- **❖** Overexpressed somatostatin receptor 2 (sstr2)
- **❖** Well and moderately differentiated tumor (WHO classification grade 1 or 2)
- **❖** Metastatic or inoperable
- **❖** Neoadjuvant therapy for pre-operative downstaging in advanced pancreatic NET
- Others: pheochromocytoma, paraganglioma, neuroblastoma or medullary thyroid carcinoma

PRRT

- Most studies report objective response rates in 15–35% of patients.
- progression free survival (PFS) and overall survival compares very favorably with that for somatostatin analogs, chemotherapy, or targeted therapies.
- compare favorably to PFS data for liver directed therapies such as ⁹⁰Y-labelled microspheres.

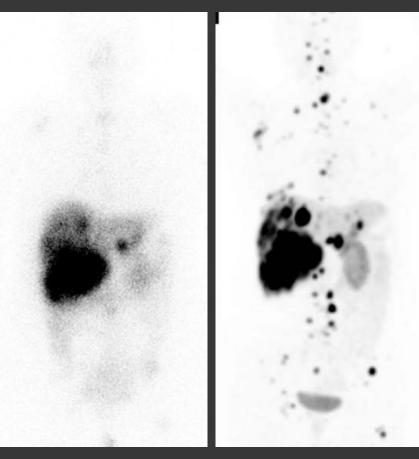
Advantages of Radionuclide Therapies

- use of radiolabeled tumor-seeking molecules to deliver a cytotoxic dose of radiation to specific tumor cells.
- difference between radionuclide therapy and external beam irradiation is the finite range of ionizing particles emitted.
- avoid or minimize toxic effects to normal organ.
- Radiation can be delivered to subclinical tumors and metastases that are too small to be imaged and treated by surgical excision and external beam therapy.

Eligibility of PRRT

	Well-dif	Poorly differentiated				
Grade (ENETS)	Low (G1)	Intermediate (G2)	High (G3)			
Ki-67 index (%)	≤2	3-20	>20			
Anatomic imaging	more rapid growth on serial imaging					
Functional imaging	Octreoscan SP or SSTR PET	FDG PET +ve				
Prognosis	Indolent (slow)	Aggressive				

¹¹¹In-octreotide SPECT/CT (available at HKSH since 09/2015)


Theranostics

- * "Therapeutics + Diagnostics"
- Use of radionuclide-labeled agents that specifically diagnose disease and then use identical or closely related agents for therapy

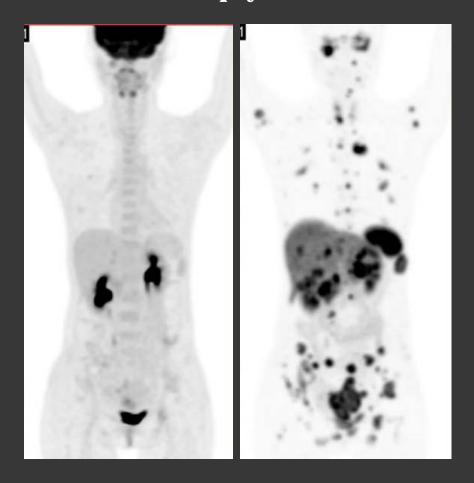
Thera peutics	Diagnostics
⁹⁰ Y DOTATOC	⁶⁸ Ga DOTATOC
¹⁷⁷ Lu DOTATATE	¹¹¹ In pentetreotide

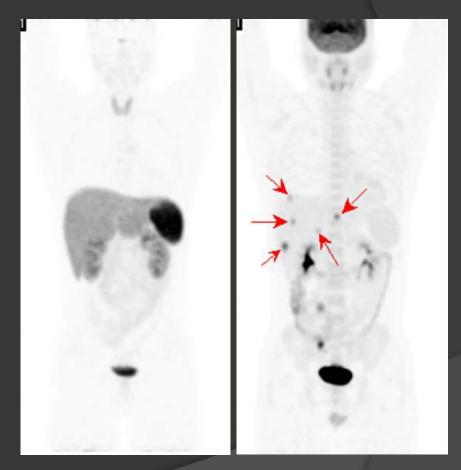
Somatostatin receptor Imaging

¹¹¹In-pentetreotide

68Ga-DOTATOC

⁶⁸Ga DOTATOC vs ¹¹¹In-pentetreotide


- 1. ssrt PET is superior to SPECT (2x higher sensitivity) in detecting NET metastases
- 2. PET is the scintigraphic method for accurate depiction of NET tumor burden
- 3. Quantification feasible in ⁶⁸Ga DOTATOC PET (SUVmax) but not in¹¹¹ In pentetreotide scintigraphy



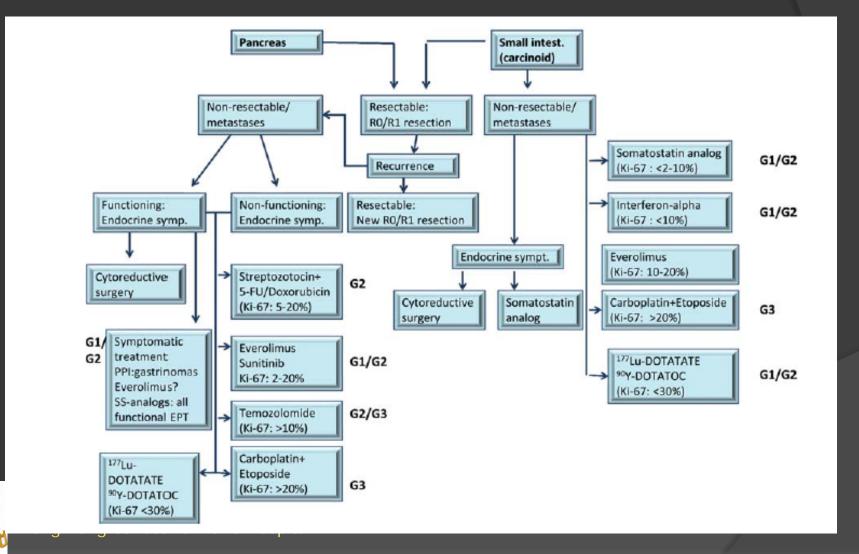
Somatostatin receptor + Metabolic Imaging

Rectal Biopsy: G2 NET

Small bowel resection: G2 NET

Candidate for PRRT

NOT candidate for PRRT



ESMO guideline for Neuroendocrine gastro-entero-pancreatic tumors in 2012

- PRRT can be considered in both functioning and nonfunctioning NETs with positive somatostatin receptor scintigraphy irrespective of the primary tumor site.
- more than 1000 patients in total have been treated in Europe with objective response rates ranging between 20% and 40%
- Response rates are higher in pancreatic compared with small intestinal NETs

ESMO guideline for Neuroendocrine gastro-entero-pancreatic tumors in 2012: Treatment algorithm

Contraindications

Absolute:

- Pregnancy
- **❖** Severe acute concomitant illnesses
- **❖** Severe unmanageable psychiatric disorder

*****Relative:

- **❖** Breast feeding (if not discontinued)
- **❖** Severe compromised **renal** function
 - ❖ ⁹⁰Y-labeled peptide:
 - ❖ normal age-adjusted renal function
 - ❖ ¹⁷⁷Lu-labeled peptide:
 - ❖ mild to moderate grade of renal impairment can be tolerated (Creatinine ≤ 1.7mg/dl or GFR & TEF ≥ 60% of mean ageadjusted normal values)
- **❖** Severe compromised bone marrow
 - ❖ WBC <3000/ul with absolute neutrophil count <1000/ul
 - ❖ 177Lu-labeled peptide: Plt <75000/ul
 - ❖ 90Y-labeled peptide: Plt <90000/ul

90Y DOTATOC vs 177Lu DOTATATE

	90Y DOTATOC	177Lu DOTATATE
Physical T1/2	2.7 days	6.7 days
Radiation	β	β & γ
Max. tissue penetration	12 mm	2 mm
Useful on	Large tumor	Small tumor
Toxicity	More renal toxicity	Less renal toxicity
Radiation isolation	No	1st few hours
Post-treatment Imaging & Dosimetry	Not applicable	Applicable

Treatment regime of PRRT

	90Y DOTATOC	¹⁷⁷ Lu DOTATATE	⁹⁰ Y DOTATOC/ ¹⁷⁷ Lu DOTATATE
Administered Activity	72-120 mCi	150-200 mCi	⁹⁰ Y: 68-135 mCi ¹⁷⁷ Lu: 150-200 mCi *adjusted on individual basis
No. of cycles	2-4	3-5	2-6
Time intervals	6-12 weeks	6-12 weeks	6-16 weeks

Concurrent therapies, administering a cocktail of ¹⁷⁷Lu and ⁹⁰Y peptides are also emerging

Renal Protection

- ❖Kidney is the critical organ in PRRT especially using ⁹⁰Y DOTATOC
- *Renal irradiation:
 - ❖ Proximal tubular reabsorption and interstitium retention
- **❖** Amino acid (AA) protection:
 - ❖ Counteract and reduce the high kidney retention of radiopeptides by positively charged AA (L-lysine and/or Larginine)

Somatostatin analogue withdrawal

- Long-acting somatostatin (Sandostatin LAR)
 - **❖**4-6 weeks
 - Substitute by short-acting somatostatin 1 month prior PRRT
- **❖**Short-acting somatostatin
 - *at least 24 hours

Adverse effect

*****Acute

- ❖ Nausea, headache & vomiting due to metabolic acidosis induced by amino acid coadministration is well managed by hydration with normal saline and possibly by repeating corticosteroid or antiemetic administrations
- *****Exacerbate syndromes related to the respective functional tumors

Adverse effect

Delayed

- **❖** Hepatic toxicity in massive liver metastases
- * Renal toxicity:
 - ❖⁹⁰Y: incidence of Grade 4 & 5 renal toxicity is 9.2%
 - *Average annual decreased in creatinine clearance:
 - **♦**90Y DOTATOC: 7%; ¹⁷⁷Lu DOTATATE: 3%
- **❖** Marrow toxicity:
 - ❖Grade 3 or 4 acute marrow toxicity mostly reversible
 - ❖ 90Y DOTATOC: 10-13% of treatment cycles
 - ❖¹⁷⁷Lu DOTATATE: 2-3% of treatment cycles
 - **❖**Sporadic cases of MDS or overt AML

PRRT: efficacy

Table 1 Tumor responses in patients with gastroenteropancreatic neuroendocrine tumors, treated with different radiolabeled somatostatin analogs.

			Tumor response					
Center (reference)	Ligand	n	CR	PR	MR	SD	PD	CR + PR (%)
Rotterdam (6)	[¹¹¹ In-DTPA ⁰]octreotide	26	0	0	5 (19%)	11 (42%)	10 (38%)	0
New Orleans (7)	[111In-DTPA0]octreotide	26	0	2 (8%)	NA	21 (81%)	3 (12%)	8
Milan (13)	[⁹⁰ Y-DOTA ⁰ ,Tyr ³]octreotide	21	0	6 (29%)	NA	11 (52%)	4 (19%)	29
Basel (14, 15, 41)		74	3 (4%)	15 (20%)	NA	48 (65%)	8 (11%)	24
Basel (15, 41)	[90Y-DOTA0,Tyr3]octreotide	33	2 (6%)	9 (27%)	NA	19 (57%)	3 (9%)	33
Multicenter (1)	[90Y-DOTA0,Tyr3]octreotide	58	0	5 (9%)	7 (12%)	33 (61%)	10 (19%)	9
Multicenter (2)	[90Y-DOTA0,Tyr3]octreotide	90	0	4 (4%)	NA	63 (70%)	11 (12%)	4
Copenhagen (3)	[90Y-DOTA0,Tyr3]octreotide	53	2 (4%)	10 (19%)	NA	34 (64%)	7 (13%)	23
Warsaw (4)	[90Y-DOTA0,Tyr3]octreotate	58	0	13 (23%)	NA	44 (73%)	3 (5%)	23
Rotterdam (5)	[177Lu-DOTA0,Tyr3]octreotate	310	5 (2%)	86 (28%)	51 (16%)	107 (35%)	61 (20%)	29
Gothenburg (42)	477	26	0	6 (38%)	NA	8 (50%)	2 (13%)	38
Lund (43)	[177Lu-DOTA ⁰ ,Tyr ³]octreotate	12	Ō	2 (17%)	3 (25%)	5 (40%)	2 (17%)	17
Milan (10)	[¹⁷⁷ Lu-DOTA ⁰ ,Tyr ³]octreotate	42	1 (2%)	12 (29%)	9 (21%)	11 (26%)	9 (21%)	31

CR, complete response; PR, partial response; MR, minor response; SD, stable disease; PD, progressive disease.

⁹⁰Y-octreotide vs ¹⁷⁷Lu-octreotate

Complete and partial responses obtained after treatment with 90Y-DOTATOC are in the same range as after treatment with 177Lu-octreotate.

Ligand	n	SD	PD	CR + PR (%)
[90Y-DOTA ⁰ ,Tyr ³]octreotide [90Y-DOTA ⁰ ,Tyr ³]octreotide [90Y-DOTA ⁰ ,Tyr ³]octreotide [90Y-DOTA ⁰ ,Tyr ³]octreotide [90Y-DOTA ⁰ ,Tyr ³]octreotide	21 74 33 58 90	11 (52%) 48 (65%) 19 (57%) 33 (61%) 63 (70%)	4 (19%) 8 (11%) 3 (9%) 10 (19%) 11 (12%)	29 24 33 9 4
[90Y-DOTA ⁰ ,Tyr ³]octreotide [90Y-DOTA ⁰ ,Tyr ³]octreotate [177Lu-DOTA ⁰ ,Tyr ³]octreotate [177Lu-DOTA ⁰ ,Tyr ³]octreotate [177Lu-DOTA ⁰ ,Tyr ³]octreotate [177Lu-DOTA ⁰ ,Tyr ³]octreotate	53 58 310 26 12 42	34 (64%) 44 (73%) 07 (35%) 8 (50%) 5 (40%) 11 (26%)	7 (13%) 3 (5%) 61 (20%) 2 (13%) 2 (17%) 9 (21%)	23 29 38 17 31

177Lu-Dotatate Significantly Improves Progression-Free Survival in Patients with Midgut Neuroendocrine Tumours: Results of the Phase III NETTER-1 Trial

Jonathan Strosberg¹, Edward Wolin², Beth Chasen³, Matthew Kulke⁴, David Bushnell⁵, Martyn Caplin⁶, Richard P. Baum⁷, Erik Mittra⁸, Timothy Hobday⁹, Andrew Hendifar¹⁰, Kjell Oberg¹¹, Maribel Lopera Sierra¹², Philippe Ruszniewski¹³, Dik Kwekkeboom¹⁴ on behalf of the NETTER-1 study group

¹ Moffitt Cancer Center, Tampa, FL 33612, USA;² Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, USA;³ University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;⁴ Dana-Farber Cancer Institute, Boston, MA 02215, USA;⁵ University of Iowa, Iowa City, IA 52242, USA;⁶ Royal Free Hospital, London, United Kingdom;⁷ Zentralklinik, Bad Berka, Germany;⁸ Stanford University Medical Center, Stanford, CA 94305, USA;⁹ Mayo Clinic College of Medicine, Rochester, MN 55905, USA;¹⁰ Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;¹¹ University Hospital, Uppsala University, Uppsala, Sweden;¹² Advanced Accelerator Applications, New York, NY 10118, USA;¹³ Hopital Beaujon, Clichy, France;¹⁴ Erasmus Medical Center, Rotterdam, Netherlands

Presentation Presidential Session II of the 18th ECCO - 40th ESMO - European Cancer Congress 2015, 27 September 2015, abstract 6LBA, Vienna

Aim

Evaluate the efficacy and safety of ¹⁷⁷Lu-Dotatate plus Octreotide30 mg compared to Novartis Octreotide LAR 60mg (off-label use)¹ in patients with inoperable, somatostatin receptor positive, midgut NET, progressive under Octreotide LAR 30mg (label use)

Design

International, multicenter, randomized, comparator-controlled, parallel-group Phase III study conducted in 51 centers with 230 patients randomized

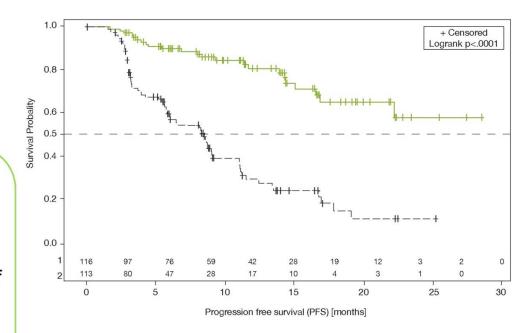
Progression-Free Survival

N = 229 (ITT)

Number of events: 91

¹⁷⁷Lu-Dotatate: 23

Oct 60 mg LAR: 68


Hazard ratio: 0.21[0.13 - 0.33] p < 0.0001

79% reduction in the risk of disease progression/death

Estimated Median PFS in the Lu-DOTATATE arm ≈ 40 months

Median PFS in Octreotide LAR

Treatment:

60mg was 8.4 months

All progressions centrally confirmed and independently reviewed for eligibility (SAP)

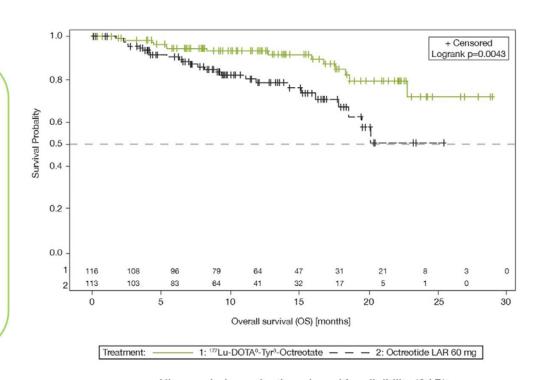
1: 177Lu-DOTA⁰-Tyr³-Octreotate — — 2: Octreotide LAR 60 mg

Presented By Jonathan Strosberg at 2016 ASCO Annual Meeting

Overall Survival (interim analysis)

N = 229 (ITT)

Number of deaths: 40


¹⁷⁷Lu-Dotatate: 14

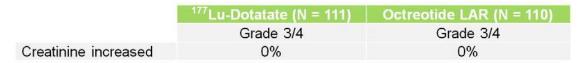
Oct 60 mg LAR: 26

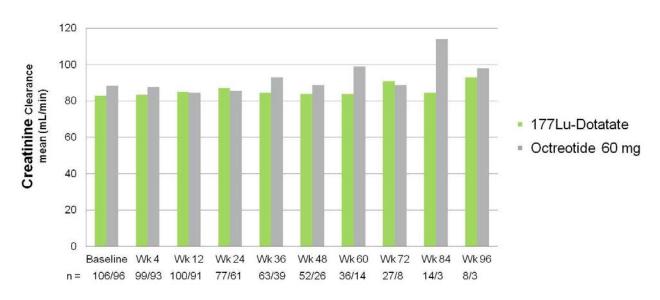
Hazard ratio: 0.398

[0.21 - 0.77]

P = 0.0043

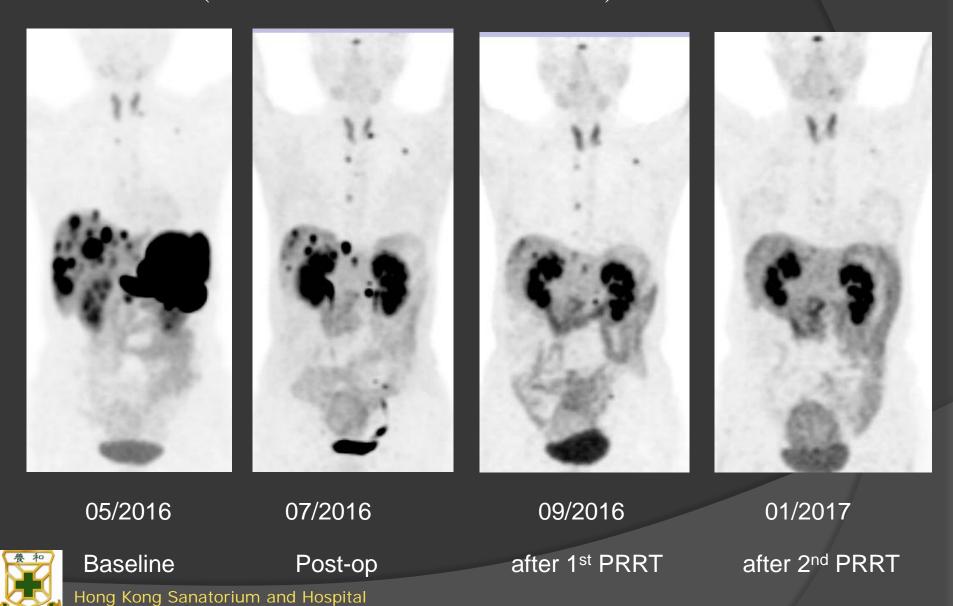
All cases independently reviewed for eligibility (SAP)


Prespecified interim analysis significance level p<0.000085

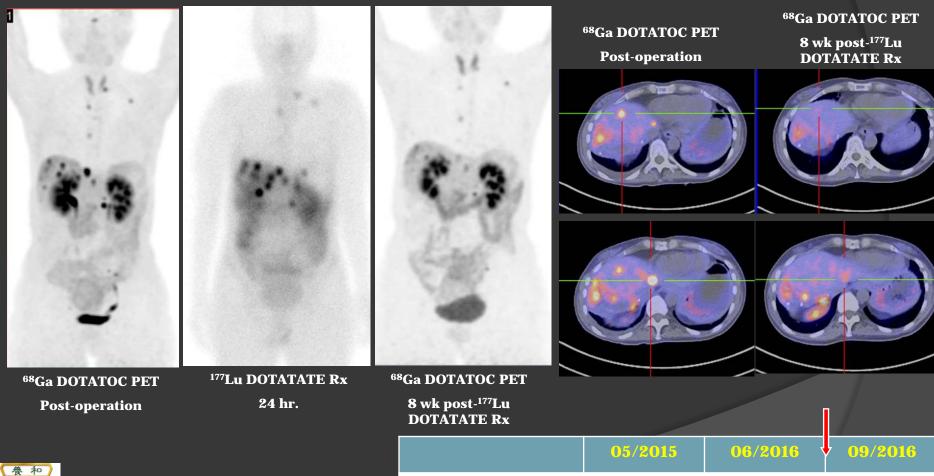

Presented By Jonathan Strosberg at 2016 ASCO Annual Meeting 12

Renal function remains stable over the 2-year observation period

Summary and Conclusions


- Final analysis: In this first prospective randomized study in patients with progressive metastatic midgut NETs, ¹⁷⁷Lu-Dotatate was superior to Octreotide 60 mg in terms of:
 - PFS (Not Reached vs 8.4 months, p<0.0001)
 - ORR (18% vs 3%, p=0.0008)
- Interim analysis suggests increased OS (14 vs 26 deaths), to be confirmed by final analysis
- 177Lu-Dotatate demonstrates a favorable safety profile, with no clinically relevant findings especially regarding hematological, renal and hepatic parameters
- Consistent benefits seen across prognostic subgroups
- While few treatment options are available for patients progressing under SSAs,
 177Lu-Dotatate has a major therapeutic benefit for this patient population

Presented By Jonathan Strosberg at 2016 ASCO Annual Meeting


Summary and C

F/44 Grade 2 pancreatic NET with multiple liver and mesenteric metastases (⁶⁸Ga-DOTATOC PET/CT scan)

F/44 pNET (glucagonoma) with nodal, liver & bone metastases

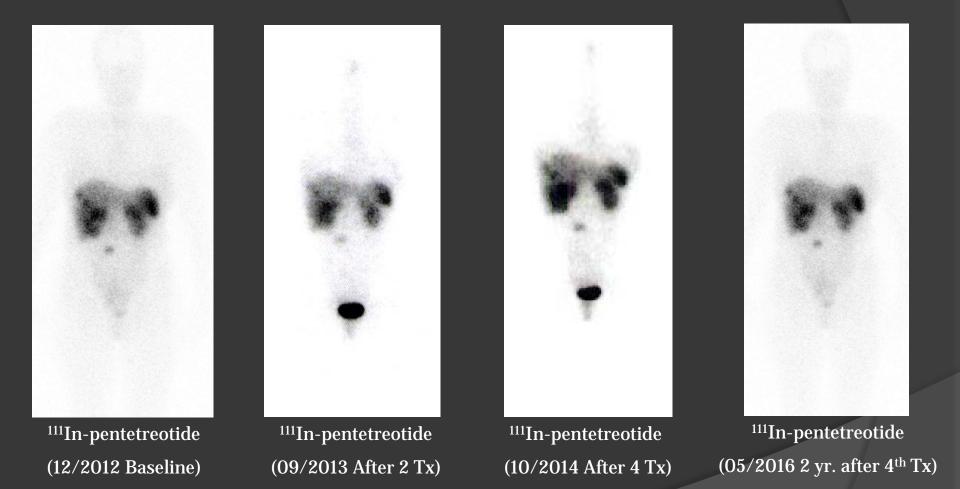
- 200mCi ¹⁷⁷Lu DOTATATE in 07/2016

Chromogranin A

317

400+

155



F/32 pNET G2 (inoperable, progressive) – 160 + 120mCi ⁹⁰Y DOTATOC

F/47 eNET G2 with mesenteric & liver metastases $-200 m\text{Ci}\ ^{177}\text{Lu}\ DOTATATE\ (12/2012;\ 03\&10/2013\ \&\ 05/2014)$

Stable disease with no significant progression

Conclusion

- PRRT is a new and valuable treatment modality for patients with inoperable or metastasized NETs.
- PRRT is well tolerated and acute sideeffects are usually mild and self-limiting.
- PRRT compares favorably to other treatment modalities in terms of PFS and OS.

Acknowledgement

- Referring physicians & patients
- Research partners
- NM & PET colleagues of HKSH

Thank You